If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+4w-380=0
a = 1; b = 4; c = -380;
Δ = b2-4ac
Δ = 42-4·1·(-380)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16\sqrt{6}}{2*1}=\frac{-4-16\sqrt{6}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16\sqrt{6}}{2*1}=\frac{-4+16\sqrt{6}}{2} $
| q/5+21=30 | | r/4-23=32 | | 14=-4x+12.5 | | 2=z/4-4 | | 65=1.5x+5x | | 99=u/7+89 | | 16-3a=2/3a+5 | | c/6-4=4 | | 7x=30+22 | | 16+2k=82 | | 7c=4c+24 | | 4/5x+2=4/22 | | 12=d/2+8 | | 8(u-3)=u+3 | | -3a=2 | | 5(3/6-2)-9=-7(1-x) | | 1/7t=6 | | 54=6(m=2.8) | | 2x/3=48 | | 3(x-3)=12x | | 2x=19+9 | | 1/3z+6=3/2(z+6) | | 78p—2=6 | | 8=5a | | k=4=8 | | v+2-19=14 | | -9=f/3 | | -12=s+7 | | 0=113.50x-(31.70x+8425.4) | | 10x–20=7x+4 | | (10x+15)+(8x–18)+(12x+3)=180 | | d/7=-12 |